Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
Atmosphere ; 14(4):746, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-2303055

Résumé

The present work aimed to assess the ambient levels of air pollution with particulate matter for both mass concentrations and number of particles for various fractions in Ploiesti city during the lockdown period determined by the COVID-19 pandemic (March–June 2020). The PM10 continuously monitored data was retrieved from four air quality automatic stations that are connected to the Romanian National Network for Monitoring Air Quality and located in the city. Because no other information was available for other more dangerous fractions, we used monitoring campaigns employing the Lighthouse 3016 IAQ particle counter near the locations of monitoring stations assessing size-segregated mass fraction concentrations (PM0.5, PM1, PM2.5, PM5, PM10, and TPM) and particle number concentration (differential Δ) range between 0.3 and 10 microns during the specified timeline between 8.00 and 11.00 a.m., which were considered the morning rush hours interval. Interpolation maps estimating the spatial distribution of the mass concentrations of various PM fractions and particle number concentration were drawn using the IDW algorithm in ArcGIS 10.8.2. Regarding the particle count of 0.5 microns during the lockdown, the smallest number was recorded when the restriction of citizens' movement was declared (24 March 2020), which was 5.8-times lower (17,301.3 particles/cm3) compared to a common day outside the lockdown period (100,047.3 particles/cm3). Similar results were observed for other particle sizes. Regarding the spatial distribution of the mass concentrations, the smaller fractions were higher in the middle of the city and west (PM0.5, PM1, and PM2.5) while the PM10 was more concentrated in the west. These are strongly related to traffic patterns. The analysis is useful to establish the impact of PM and the assessment of urban exposure and better air quality planning. Long-term exposure to PM in conjunction with other dangerous air pollutants in urban aerosols of Ploiesti can lead to potential adverse effects on the population, especially for residents located in the most impacted areas.

2.
Sci Total Environ ; 759: 143548, 2021 Mar 10.
Article Dans Anglais | MEDLINE | ID: covidwho-912622

Résumé

Factor analysis models use the covariance of measured variables to identify and apportion sources. These models, particularly positive matrix factorization (PMF), have been extensively used for analyzing particle number concentrations (PNCs) datasets. However, the variation of observed PNCs and particle size distribution are driven by both the source emission rates and atmospheric dispersion as well as chemical and physical transformation processes. This variation in the observation data caused by meteorologically induced dilution reduces the ability to obtain accurate source apportionment results. To reduce the influence of dilution on quantitative source estimates, a methodology for improving the accuracy of source apportionment results by incorporating a measure of dispersion, the ventilation coefficient, into the PMF analysis (called dispersion normalized PMF, DN-PMF) was applied to a PNC dataset measured from a field campaign that includes the Spring Festival event and the start of the COVID-19 lockdown in Tianjin, China. The data also included gaseous pollutants and hourly PM2.5 compositional data. Eight factors were resolved and interpreted as municipal incinerator, traffic nucleation, secondary inorganic aerosol (SIA), traffic emissions, photonucleation, coal combustion, residential heating and festival emissions. The DN-PMF enhanced the diel patterns of photonucleation and the two traffic factors by enlarging the differences between daytime peak values and nighttime concentrations. The municipal incinerator plant, traffic emissions, and coal combustion have cleaner and more clearly defined directionalities after dispersion normalization. Thus, dispersion normalized PMF is capable of enhancing the source emission patterns. After the COVID-19 lockdown began, PNC of traffic nucleation and traffic emissions decreased by 41% and 44%, respectively, while photonucleation produced more particles likely due to the reduction in the condensation sink. The significant changes in source emissions indicate a substantially reduced traffic volume after the implement of lockdown measures.


Sujets)
Polluants atmosphériques , COVID-19 , Polluants atmosphériques/analyse , Chine , Contrôle des maladies transmissibles , Épidémies de maladies , Surveillance de l'environnement , Humains , Matière particulaire/analyse , SARS-CoV-2 , Emissions des véhicules/analyse
3.
Sci Total Environ ; 742: 140931, 2020 Nov 10.
Article Dans Anglais | MEDLINE | ID: covidwho-641193

Résumé

We investigated changes in traffic-related air pollutant concentrations in an urban area during the COVID-19 pandemic. The study was conducted in a mixed commercial-residential neighborhood in Somerville (MA, USA), where traffic is the dominant source of air pollution. Measurements were made between March 27 and May 14, 2020, coinciding with a dramatic reduction in traffic (71% drop in car and 46% drop in truck traffic) due to business shutdowns and a statewide stay-at-home advisory. Indicators of fresh vehicular emissions (ultrafine particle number concentration [PNC] and black carbon [BC]) were measured with a mobile monitoring platform on an interstate highway and major and minor roadways. Our results show that depending on road class, median PNC and BC contributions from traffic were 60-68% and 22-46% lower, respectively, during the lockdown compared to pre-pandemic conditions, and corresponding reductions in total on-road concentrations were 45-69% and 22-56%, respectively. A higher BC: PNC concentration ratio was observed during the lockdown period likely indicative of the higher fraction of diesel vehicles in the fleet during the lockdown. Overall, the scale of reductions in ultrafine particle and BC concentrations was commensurate with the reductions in traffic. This natural experiment allowed us to quantify the direct impacts of reductions in traffic emissions on neighborhood-scale air quality, which are not captured by the regional regulatory-monitoring network. These results underscore the importance of measurements of appropriate proxies for traffic emissions at relevant spatial scales. Our results are useful for exposure analysis as well as city and regional planners evaluating mitigation strategies for traffic-related air pollution.


Sujets)
Polluants atmosphériques/analyse , Pollution de l'air/analyse , Infections à coronavirus , Pandémies , Pneumopathie virale , Betacoronavirus , COVID-19 , Carbone , Villes , Surveillance de l'environnement , Humains , Matière particulaire/analyse , SARS-CoV-2 , Emissions des véhicules/analyse
SÉLECTION CITATIONS
Détails de la recherche